organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Phenyl N-(4-fluorophenyl)carbamate

Zhao Yang and Zhi-Xiang Wang*

Department of Pharmaceutical Engineering, China Pharmaceutical University, Tongjiaxiang No. 24 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: yzcpu@163.com

Received 7 April 2009: accepted 8 April 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.007 Å; R factor = 0.073; wR factor = 0.157; data-to-parameter ratio = 13.4.

The asymmetric unit of the title compound, C₁₃H₁₀FNO₂, contains two crystallographically independent molecules. The aromatic rings are oriented at dihedral angles of 61.77 (3) and 53.94 (3)° in the two molecules. An N-H···O hydrogen bond links the molecules. In the crystal structure, intermolecular N-H···O hydrogen bonds link the molecules into chains. Weak C-H··· π interactions are also present.

Related literature

For a related structure, see: Hynes et al. (2008). For bondlength data, see: Allen et al. (1987).

Experimental

Crystal data

$C_{13}H_{10}FNO_2$
$M_r = 231.22$
Triclinic, $P\overline{1}$
a = 5.8860 (12) Å
b = 7.8540 (16) Å
c = 24.761 (5) Å
$\alpha = 96.62 \ (3)^{\circ}$
$\beta = 92.82 \ (3)^{\circ}$

 $\nu = 91.19 \ (3)^{\circ}$ V = 1135.3 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 294 K $0.10 \times 0.10 \times 0.08 \; \mathrm{mm}$

Data collection

Enraf-Nonius CAD-4 4110 independent reflections 1662 reflections with $I > 2\sigma(I)$ diffractometer $R_{\rm int} = 0.060$ Absorption correction: ψ scan (North et al., 1968) 3 standard reflections $T_{\min} = 0.990, \ T_{\max} = 0.992$ 4548 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.073$ 307 parameters $wR(F^2) = 0.157$ H-atom parameters constrained S = 1.00 $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$ 4110 reflections

frequency: 120 min

intensity decay: 1%

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots O4^{i}$ $N2 - H2C \cdots O2$ $C19 - H19A \cdots Cg2^{ii}$	0.86 0.86 0.93	2.32 2.08 2.94	3.044 (4) 2.931 (4) 3.644 (4)	142 171 134
$C23-H23A\cdots Cg1^{iii}$	0.93	2.97	3.710 (5)	138

Symmetry codes: (i) x - 1, y - 1, z; (ii) x, y + 1, z; (iii) x + 1, y + 1, z. Cg1 and Cg2 are the centroids of the C1-C6 and C8-C13 rings, respectively.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2663).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Hynes, J. J., Dyckman, A. J., Lin, S. W. & Stephen, T. (2008). J. Med. Chem. 51, 4 - 16

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o1036 [doi:10.1107/S1600536809013312]

Phenyl N-(4-fluorophenyl)carbamate

Z. Yang and Z.-X. Wang

Comment

Some derivatives of aniline are important chemical materials. We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules (Fig. 1), in which the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. Rings A (C1-C6), B (C8-C13) and A' (C14-C19), B' (C21-C26) are, of course, planar, and they are oriented at dihedral angles of A/B = 61.77 (3) and A'/B' = 53.94 (3) °. Intramolecular N-H···O hydrogen bond (Table 1) links the molecules.

In the crystal structure, intra- and intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist weak C—H··· π interactions (Table 1).

Experimental

For the preparation of the title compound, phenyl chloroformate (1.0 ml) was added slowly to a cold solution of 4-fluorbenzenamine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. It was washed with water (20 ml), dried and concentrated to give the title compound (yield; 1.3 g) (Hynes *et al.*, 2008). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.

Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Phenyl N-(4-fluorophenyl)carbamate

Crystal data	
C ₁₃ H ₁₀ FNO ₂	Z = 4
$M_r = 231.22$	$F_{000} = 480$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.353 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.8860 (12) Å	Cell parameters from 25 reflections
b = 7.8540 (16) Å	$\theta = 8 - 12^{\circ}$
c = 24.761 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 96.62 \ (3)^{\circ}$	T = 294 K
$\beta = 92.82 \ (3)^{\circ}$	Block, colorless
$\gamma = 91.19 (3)^{\circ}$	$0.10\times0.10\times0.08~mm$
$V = 1135.3 (4) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\text{int}} = 0.060$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.7^{\circ}$
T = 294 K	$h = 0 \rightarrow 7$
$\omega/2\theta$ scans	$k = -9 \rightarrow 9$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	<i>l</i> = −29→29
$T_{\min} = 0.990, \ T_{\max} = 0.992$	3 standard reflections
4548 measured reflections	every 120 min
4110 independent reflections	intensity decay: 1%
1662 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.073$ H-atom parameters constrained $wR(F^2) = 0.157$ $w = 1/[\sigma^2(F_o^2) + (0.052P)^2]$ $where P = (F_o^2 + 2F_c^2)/3$ S = 1.00 $(\Delta/\sigma)_{max} < 0.001$ 4110 reflections $\Delta\rho_{max} = 0.13$ e Å⁻³307 parameters $\Delta\rho_{min} = -0.13$ e Å⁻³Primary atom site location: structure-invariant direct Γ_{abc} (Δ/σ)

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	auivalent	isotror	oic dis	placement	parameters	$(\AA^2$)
1		000.0000000		011.0010	0. 00	100000000000000000000000000000000000000	1001.00		p		(/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.0390 (6)	-0.6473 (4)	0.26993 (14)	0.0831 (11)
H1A	-0.0691	-0.7213	0.2599	0.100*
N2	0.6939 (5)	-0.2644 (4)	0.22504 (13)	0.0755 (11)
H2C	0.6083	-0.3507	0.2300	0.091*
F1	-0.0366 (5)	-0.3165 (3)	0.47653 (11)	0.1065 (9)
F2	1.1428 (5)	-0.3284 (4)	0.03482 (12)	0.1253 (11)
01	0.1510 (5)	-0.7508 (4)	0.19019 (13)	0.1045 (12)
O2	0.3575 (5)	-0.5355 (4)	0.23766 (11)	0.0916 (10)
O3	0.5300 (5)	-0.1536 (4)	0.29759 (12)	0.0938 (11)
O4	0.8164 (4)	-0.0021 (3)	0.26628 (10)	0.0724 (8)
C1	0.3835 (12)	-0.7830 (7)	0.0572 (2)	0.1033 (18)
H1B	0.3416	-0.7637	0.0218	0.124*
C2	0.2332 (9)	-0.7392 (6)	0.0984 (3)	0.0934 (16)
H2A	0.0941	-0.6896	0.0917	0.112*
C3	0.3045 (9)	-0.7740 (6)	0.1487 (2)	0.0763 (14)
C4	0.5077 (11)	-0.8420 (6)	0.1599 (2)	0.0894 (16)
H4A	0.5516	-0.8605	0.1953	0.107*
C5	0.6465 (9)	-0.8828 (6)	0.1186 (3)	0.1024 (18)
H5A	0.7849	-0.9327	0.1259	0.123*
C6	0.5889 (11)	-0.8528 (7)	0.0673 (3)	0.108 (2)
H6A	0.6871	-0.8792	0.0394	0.130*
C7	0.1980 (8)	-0.6340 (6)	0.23447 (19)	0.0860 (15)
C8	0.0241 (7)	-0.5556 (5)	0.32213 (17)	0.0698 (12)
C9	-0.1636 (7)	-0.5849 (5)	0.35086 (18)	0.0740 (12)

H9A	-0.2782	-0.6603	0.3349	0.089*
C10	-0.1859 (8)	-0.5051 (6)	0.4028 (2)	0.0861 (14)
H10A	-0.3134	-0.5253	0.4221	0.103*
C11	-0.0157 (8)	-0.3963 (5)	0.42483 (19)	0.0776 (13)
C12	0.1691 (8)	-0.3626 (5)	0.39833 (18)	0.0772 (13)
H12A	0.2818	-0.2868	0.4150	0.093*
C13	0.1923 (7)	-0.4407 (5)	0.34595 (18)	0.0784 (13)
H13A	0.3192	-0.4165	0.3269	0.094*
C14	0.4753 (10)	0.1478 (6)	0.4438 (2)	0.0860 (15)
H14A	0.4594	0.2114	0.4774	0.103*
C15	0.6668 (9)	0.0580 (6)	0.4346 (2)	0.0882 (15)
H15A	0.7815	0.0618	0.4620	0.106*
C16	0.6942 (7)	-0.0391 (5)	0.3851 (2)	0.0744 (13)
H16A	0.8265	-0.0994	0.3790	0.089*
C17	0.5254 (8)	-0.0445 (5)	0.34616 (18)	0.0647 (11)
C18	0.3329 (8)	0.0490 (6)	0.35436 (18)	0.0775 (13)
H18A	0.2203	0.0478	0.3266	0.093*
C19	0.3070 (9)	0.1455 (6)	0.4044 (2)	0.0829 (14)
H19A	0.1761	0.2075	0.4107	0.099*
C20	0.6969 (7)	-0.1294 (6)	0.26345 (17)	0.0763 (13)
C21	0.8171 (7)	-0.2801 (5)	0.17706 (16)	0.0588 (10)
C22	1.0269 (7)	-0.2011 (5)	0.17460 (18)	0.0738 (12)
H22A	1.0954	-0.1378	0.2054	0.089*
C23	1.1343 (7)	-0.2167 (5)	0.12616 (19)	0.0798 (13)
H23A	1.2738	-0.1612	0.1237	0.096*
C24	1.0365 (9)	-0.3124 (6)	0.08250 (19)	0.0840 (14)
C25	0.8320 (8)	-0.3995 (5)	0.08437 (18)	0.0813 (13)
H25A	0.7693	-0.4681	0.0540	0.098*
C26	0.7227 (7)	-0.3818 (5)	0.13273 (17)	0.0717 (12)
H26A	0.5845	-0.4393	0.1352	0.086*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.078 (3)	0.080 (3)	0.086 (3)	-0.031 (2)	0.023 (2)	-0.013 (2)
0.082 (3)	0.062 (2)	0.080 (3)	-0.038 (2)	0.023 (2)	-0.0024 (19)
0.120 (2)	0.102 (2)	0.094 (2)	-0.0065 (17)	0.0279 (17)	-0.0139 (16)
0.140 (3)	0.121 (2)	0.112 (2)	-0.0283 (19)	0.061 (2)	-0.0174 (18)
0.105 (3)	0.109 (3)	0.091 (2)	-0.056 (2)	0.030 (2)	-0.027 (2)
0.094 (2)	0.085 (2)	0.091 (2)	-0.0490 (18)	0.0269 (18)	-0.0119 (17)
0.099 (2)	0.086 (2)	0.089 (2)	-0.0449 (18)	0.0397 (19)	-0.0265 (18)
0.0745 (19)	0.0645 (18)	0.0752 (19)	-0.0264 (15)	0.0099 (15)	-0.0018 (14)
0.112 (5)	0.125 (5)	0.071 (4)	-0.036 (4)	-0.012 (4)	0.014 (3)
0.081 (4)	0.089 (4)	0.112 (5)	-0.014 (3)	-0.010 (4)	0.030 (3)
0.065 (3)	0.070 (3)	0.090 (4)	-0.027 (3)	0.014 (3)	-0.005 (3)
0.099 (4)	0.083 (4)	0.083 (4)	-0.035 (3)	-0.008 (3)	0.008 (3)
0.080 (4)	0.063 (3)	0.163 (6)	-0.007 (3)	-0.009 (5)	0.013 (4)
0.081 (4)	0.102 (5)	0.134 (6)	-0.029 (4)	0.032 (4)	-0.025 (4)
	U^{11} 0.078 (3) 0.082 (3) 0.120 (2) 0.140 (3) 0.105 (3) 0.094 (2) 0.099 (2) 0.0745 (19) 0.112 (5) 0.081 (4) 0.080 (4) 0.081 (4)	U^{11} U^{22} 0.078 (3) 0.080 (3) 0.082 (3) 0.062 (2) 0.120 (2) 0.102 (2) 0.120 (2) 0.102 (2) 0.140 (3) 0.121 (2) 0.105 (3) 0.109 (3) 0.094 (2) 0.085 (2) 0.099 (2) 0.086 (2) 0.0745 (19) 0.0645 (18) 0.112 (5) 0.125 (5) 0.081 (4) 0.083 (4) 0.080 (4) 0.063 (3) 0.081 (4) 0.102 (5)	U^{11} U^{22} U^{33} 0.078 (3) 0.080 (3) 0.086 (3) 0.082 (3) 0.062 (2) 0.080 (3) 0.120 (2) 0.102 (2) 0.094 (2) 0.140 (3) 0.121 (2) 0.112 (2) 0.105 (3) 0.109 (3) 0.091 (2) 0.094 (2) 0.085 (2) 0.091 (2) 0.094 (2) 0.085 (2) 0.091 (2) 0.099 (2) 0.086 (2) 0.089 (2) 0.0745 (19) 0.0645 (18) 0.0752 (19) 0.112 (5) 0.125 (5) 0.071 (4) 0.081 (4) 0.083 (4) 0.083 (4) 0.080 (4) 0.063 (3) 0.163 (6) 0.081 (4) 0.102 (5) 0.134 (6)	U^{11} U^{22} U^{33} U^{12} 0.078 (3)0.080 (3)0.086 (3) $-0.031 (2)$ 0.082 (3)0.062 (2)0.080 (3) $-0.038 (2)$ 0.120 (2)0.102 (2)0.094 (2) $-0.0065 (17)$ 0.140 (3)0.121 (2)0.112 (2) $-0.0283 (19)$ 0.105 (3)0.109 (3)0.091 (2) $-0.0490 (18)$ 0.094 (2)0.085 (2)0.091 (2) $-0.0449 (18)$ 0.099 (2)0.086 (2)0.089 (2) $-0.0264 (15)$ 0.112 (5)0.125 (5)0.071 (4) $-0.036 (4)$ 0.081 (4)0.083 (4)0.083 (4) $-0.035 (3)$ 0.080 (4)0.063 (3)0.163 (6) $-0.007 (3)$ 0.081 (4)0.102 (5)0.134 (6) $-0.029 (4)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.078(3)$ $0.080(3)$ $0.086(3)$ $-0.031(2)$ $0.023(2)$ $0.082(3)$ $0.062(2)$ $0.080(3)$ $-0.038(2)$ $0.023(2)$ $0.120(2)$ $0.102(2)$ $0.094(2)$ $-0.0065(17)$ $0.0279(17)$ $0.140(3)$ $0.121(2)$ $0.112(2)$ $-0.0283(19)$ $0.061(2)$ $0.105(3)$ $0.109(3)$ $0.091(2)$ $-0.056(2)$ $0.030(2)$ $0.094(2)$ $0.085(2)$ $0.091(2)$ $-0.0449(18)$ $0.0269(18)$ $0.099(2)$ $0.086(2)$ $0.089(2)$ $-0.0449(18)$ $0.0397(19)$ $0.0745(19)$ $0.0645(18)$ $0.0752(19)$ $-0.0264(15)$ $0.0099(15)$ $0.112(5)$ $0.125(5)$ $0.071(4)$ $-0.036(4)$ $-0.012(4)$ $0.081(4)$ $0.083(4)$ $0.083(4)$ $-0.027(3)$ $0.014(3)$ $0.099(4)$ $0.083(4)$ $0.083(4)$ $-0.007(3)$ $-0.008(3)$ $0.080(4)$ $0.063(3)$ $0.163(6)$ $-0.007(3)$ $-0.009(5)$ $0.081(4)$ $0.102(5)$ $0.134(6)$ $-0.029(4)$ $0.032(4)$

C7	0.081 (4)	0.093 (4)	0.077 (3)	-0.033 (3)	0.015 (3)	-0.015 (3)
C8	0.069 (3)	0.062 (3)	0.079 (3)	-0.017 (2)	0.015 (2)	0.008 (2)
C9	0.066 (3)	0.067 (3)	0.087 (3)	-0.016 (2)	0.010 (2)	0.002 (2)
C10	0.083 (3)	0.078 (3)	0.097 (4)	-0.013 (3)	0.025 (3)	0.006 (3)
C11	0.081 (4)	0.061 (3)	0.089 (4)	0.005 (3)	0.024 (3)	-0.007 (3)
C12	0.081 (3)	0.074 (3)	0.076 (3)	-0.015 (3)	0.000 (3)	0.009 (3)
C13	0.075 (3)	0.077 (3)	0.082 (3)	-0.030 (2)	0.009 (2)	0.006 (3)
C14	0.093 (4)	0.086 (4)	0.078 (4)	-0.010 (3)	0.020 (3)	0.002 (3)
C15	0.090 (4)	0.098 (4)	0.077 (4)	-0.012 (3)	0.002 (3)	0.018 (3)
C16	0.055 (3)	0.064 (3)	0.108 (4)	-0.001 (2)	0.015 (3)	0.020 (3)
C17	0.065 (3)	0.057 (3)	0.072 (3)	-0.014 (2)	0.012 (3)	0.005 (2)
C18	0.077 (4)	0.078 (3)	0.079 (3)	-0.020 (3)	-0.004 (3)	0.021 (3)
C19	0.080 (4)	0.069 (3)	0.102 (4)	0.013 (3)	0.022 (3)	0.008 (3)
C20	0.081 (3)	0.070 (3)	0.076 (3)	-0.028 (3)	0.017 (3)	-0.003 (3)
C21	0.059 (3)	0.048 (2)	0.068 (3)	-0.007 (2)	0.003 (2)	0.002 (2)
C22	0.054 (3)	0.073 (3)	0.090 (3)	-0.018 (2)	0.002 (2)	-0.005 (2)
C23	0.068 (3)	0.070 (3)	0.099 (4)	-0.010 (2)	0.029 (3)	-0.007 (3)
C24	0.099 (4)	0.070 (3)	0.082 (4)	-0.006 (3)	0.032 (3)	-0.006 (3)
C25	0.093 (4)	0.073 (3)	0.074 (3)	-0.006 (3)	0.009 (3)	-0.008 (2)
C26	0.072 (3)	0.065 (3)	0.074 (3)	-0.018 (2)	0.007 (2)	-0.007 (2)

Geometric parameters (Å, °)

N1—C7	1.325 (5)	С9—Н9А	0.9300
N1—C8	1.413 (4)	C10—C11	1.354 (5)
N1—H1A	0.8600	C10—H10A	0.9300
N2-C20	1.340 (4)	C11—C12	1.335 (5)
N2-C21	1.417 (4)	C12—C13	1.384 (5)
N2—H2C	0.8600	C12—H12A	0.9300
F1—C11	1.371 (4)	C13—H13A	0.9300
F2—C24	1.358 (4)	C14—C19	1.354 (6)
O1—C3	1.399 (5)	C14—C15	1.357 (6)
O1—C7	1.359 (4)	C14—H14A	0.9300
O2—C7	1.198 (4)	C15—C16	1.385 (6)
O3—C17	1.396 (5)	C15—H15A	0.9300
O3—C20	1.351 (4)	C16—C17	1.347 (5)
O4—C20	1.204 (4)	C16—H16A	0.9300
C1—C6	1.361 (7)	C17—C18	1.374 (5)
C1—C2	1.400 (6)	C18—C19	1.393 (6)
C1—H1B	0.9300	C18—H18A	0.9300
C2—C3	1.355 (6)	C19—H19A	0.9300
C2—H2A	0.9300	C21—C26	1.368 (5)
C3—C4	1.349 (6)	C21—C22	1.377 (5)
C4—C5	1.353 (6)	C22—C23	1.377 (5)
C4—H4A	0.9300	C22—H22A	0.9300
C5—C6	1.348 (7)	C23—C24	1.341 (5)
С5—Н5А	0.9300	C23—H23A	0.9300
С6—Н6А	0.9300	C24—C25	1.377 (6)
С8—С9	1.373 (5)	C25—C26	1.381 (5)

C8—C13	1.388 (5)	C25—H25A	0.9300
C9—C10	1.379 (5)	C26—H26A	0.9300
C7—N1—C8	128.3 (4)	C13—C12—H12A	120.1
C7—N1—H1A	115.8	C12—C13—C8	119.2 (4)
C8—N1—H1A	115.8	С12—С13—Н13А	120.4
C20—N2—C21	126.8 (3)	C8—C13—H13A	120.4
C20—N2—H2C	116.6	C19—C14—C15	120.5 (5)
C21—N2—H2C	116.6	C19—C14—H14A	119.7
C7—O1—C3	120.4 (3)	C15—C14—H14A	119.7
$C_{20} = 0_{3} = C_{17}$	118 5 (3)	C14—C15—C16	121.0 (5)
C6-C1-C2	122.3 (5)	C14—C15—H15A	119.5
C6-C1-H1B	118.9	C16—C15—H15A	119.5
C^2 — C^1 — H^1B	118.9	C17 - C16 - C15	118.7 (4)
C_{3} C_{2} C_{1}	115.4 (5)	C17—C16—H16A	120.6
$C_3 = C_2 = H_2 A$	122.3	C15-C16-H16A	120.6
C1 - C2 - H2A	122.3	C16-C17-C18	120.0
C4 - C3 - C2	122.5	C16-C17-O3	120.9(1) 121.9(5)
C4 - C3 - O1	118 5 (6)	$C_{18} - C_{17} - O_{3}$	121.9(3) 1170(4)
$C_{2}^{2} = C_{3}^{2} = 01$	117.8 (6)	$C_{17} - C_{18} - C_{19}$	117.0(4)
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}	1189(5)	C17 - C18 - H18A	120.1
$C_3 - C_4 - H_4 \Delta$	120.6	C19-C18-H18A	120.1
C_{2} C_{4} H_{4A}	120.6	$C_{14} - C_{19} - C_{18}$	120.1
C6-C5-C4	121.5 (6)	$C_{14} - C_{19} - H_{19A}$	120.5
C6_C5_H5A	119.2	C18 - C19 - H19A	120.5
C4 - C5 - H5A	119.2	Ω_{1} Ω_{2} Ω_{2	120.3
C5-C6-C1	119.2	04 - 020 - 03	127.1(4)
C5-C6-H6A	120.8	$N_{2} = C_{20} = O_{3}$	124.4(4) 108 3 (3)
C1 - C6 - H6A	120.8	$C_{26} = C_{21} = C_{22}$	100.3(3)
$\Omega^2 - \Omega^2 - N^1$	120.0	C26-C21-N2	120.3(4)
02 - 07 - 01	120.5(4)	$C_{20} = C_{21} = N_2$	117.4(3)
N1-C7-01	122.3(4) 109.0(4)	$C_{22} = C_{21} = 1\sqrt{2}$	122.3(4)
$C_{0} = C_{1}^{2} = C_{1}^{2}$	109.0(4) 118.8(4)	$C_{21} - C_{22} - C_{23}$	120.3
$C_{9} = C_{8} = C_{13}$	118.0(4)	$C_{21} = C_{22} = H_{22A}$	120.3
$C_{13} C_{8} N_{1}$	110.1(4)	$C_{23} - C_{22} - \Pi_{22} R$	120.5
$C_{13} = C_{0} = C_{10}$	123.0(4) 121.4(4)	C24—C23—C22	119.0 (4)
$C_{8} = C_{9} = C_{10}$	110.3	$C_{24} = C_{23} = H_{23} A$	120.2
C10-C9-H9A	119.3	$C_{22} = C_{23} = C_{24} = F_2$	1196(4)
$C_{10} = C_{10} = C_{10}$	117.5 117.7(A)	$C_{23} - C_{24} - C_{25}$	117.0(4)
$C_{11} = C_{10} = C_{10}$	117.7 (+)	$C_{23} - C_{24} - C_{23}$	122.3(4)
C_{11} C_{10} H_{10A}	121.2	12 - 24 - 225	118.1(4)
$C_{12} = C_{11} = C_{10}$	121.2 123 0 (4)	$C_{24} = C_{25} = C_{20}$	121.0
$C_{12} = C_{11} = C_{10}$	123.0(4)	$C_{24} = C_{25} = H_{25} A$	121.0
C_{12} C_{11} F_{1} C_{10} C_{11} F_{1}	118.1 (4)	$C_{20} - C_{20} - C$	121.0 120.2(4)
$C_{10} - C_{11} - C_{12}$	110.2 (4)	C21 C26 H26A	120.2 (4)
$C_{11} - C_{12} - C_{13}$	117.0 (4)	$C_{21} = C_{20} = H_{20} A$	119.9
	120.1	$C_{23} = C_{20} = \Pi_{20A}$	117.7
$C_{1} = C_{2} = C_{3}$	-1.2(/)	C19 - C14 - C15 - C16	-0.0 (/)
C1 - C2 - C3 - C4	1./(/)	U14-U15-U16-U17	-0./(6)
C1 - C2 - C3 - O1	-1/3.0(4)	U13—U16—U17—U18	2.3 (6)

C7—O1—C3—C4	67.3 (6)	C15-C16-C17-O3	-173.0 (3)
C7—O1—C3—C2	-117.7 (5)	C20—O3—C17—C16	-63.8 (6)
C2—C3—C4—C5	-2.0 (7)	C20—O3—C17—C18	120.8 (4)
O1—C3—C4—C5	172.7 (4)	C16-C17-C18-C19	-2.6 (6)
C3—C4—C5—C6	1.8 (7)	O3—C17—C18—C19	172.9 (4)
C4—C5—C6—C1	-1.3 (8)	C15-C14-C19-C18	0.3 (7)
C2-C1-C6-C5	1.1 (8)	C17-C18-C19-C14	1.3 (6)
C8—N1—C7—O2	-4.2 (9)	C21—N2—C20—O4	-5.8 (8)
C8—N1—C7—O1	177.7 (4)	C21—N2—C20—O3	170.2 (4)
C3—O1—C7—O2	7.6 (8)	C17—O3—C20—O4	-15.0 (7)
C3—O1—C7—N1	-174.2 (4)	C17—O3—C20—N2	168.9 (4)
C7—N1—C8—C9	176.8 (5)	C20-N2-C21-C26	-150.6 (4)
C7—N1—C8—C13	-4.7 (7)	C20-N2-C21-C22	31.2 (6)
C13—C8—C9—C10	-1.1 (7)	C26—C21—C22—C23	4.0 (6)
N1-C8-C9-C10	177.5 (4)	N2-C21-C22-C23	-177.8 (4)
C8—C9—C10—C11	-0.1 (7)	C21—C22—C23—C24	-1.9 (7)
C9-C10-C11-C12	0.6 (7)	C22—C23—C24—F2	-179.7 (4)
C9—C10—C11—F1	-180.0 (4)	C22—C23—C24—C25	-1.2 (8)
C10-C11-C12-C13	0.0 (8)	C23—C24—C25—C26	2.1 (7)
F1-C11-C12-C13	-179.4 (4)	F2-C24-C25-C26	-179.4 (4)
C11—C12—C13—C8	-1.1 (7)	C22-C21-C26-C25	-3.1 (6)
C9—C8—C13—C12	1.6 (7)	N2-C21-C26-C25	178.6 (4)
N1-C8-C13-C12	-176.9 (4)	C24—C25—C26—C21	0.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A····O4 ⁱ	0.86	2.32	3.044 (4)	142
N2—H2C···O2	0.86	2.08	2.931 (4)	171
C19—H19A…Cg2 ⁱⁱ	0.93	2.94	3.644 (4)	134
C23—H23A…Cg1 ⁱⁱⁱ	0.93	2.97	3.710 (5)	138
	.1 (

Symmetry codes: (i) *x*-1, *y*-1, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*+1, *y*+1, *z*.

